
Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Analyzing Queueing Networks with Multiclass
Fork-Join Constructs

Joel Choo (cyc15@ic.ac.uk)

Imperial College London

September 2, 2016

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

What is a fork-join queue?

Definition

A fork-join queue is a queue where incoming jobs are split on
arrival for service by numerous servers and joined before departure

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Objective

We want to come up with an approximation method for multiclass
fork-join queueing networks with an implementation that is:

Accurate

Efficient

Universal

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Overview

Two important building blocks:

Decay Rate Approximation (DRA)

Fork-Join Approximate Mean Value Analysis (FJ-AMVA)

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Method to approximate multiclass queueing networks

Does not work with fork-join

Iteratively solves for the queue lengths and throughputs

Our method uses the same high level approach/ideas as DRA

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Method to approximate multiclass queueing networks

Does not work with fork-join

Iteratively solves for the queue lengths and throughputs

Our method uses the same high level approach/ideas as DRA

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Method to approximate multiclass queueing networks

Does not work with fork-join

Iteratively solves for the queue lengths and throughputs

Our method uses the same high level approach/ideas as DRA

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Method to approximate multiclass queueing networks

Does not work with fork-join

Iteratively solves for the queue lengths and throughputs

Our method uses the same high level approach/ideas as DRA

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Decay Rate Approximation

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join AMVA

Fork-Join Approximate Mean Value Analysis

Approximation method for multiclass fork-join queueing
networks

Iteratively solve for the mean queue lengths and throughputs

Best approximation method we know of

Compare our results against this

Used in our method to initialize the queue lengths and
throughputs

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join AMVA

Fork-Join Approximate Mean Value Analysis

Approximation method for multiclass fork-join queueing
networks

Iteratively solve for the mean queue lengths and throughputs

Best approximation method we know of

Compare our results against this

Used in our method to initialize the queue lengths and
throughputs

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join AMVA

Fork-Join Approximate Mean Value Analysis

Approximation method for multiclass fork-join queueing
networks

Iteratively solve for the mean queue lengths and throughputs

Best approximation method we know of

Compare our results against this

Used in our method to initialize the queue lengths and
throughputs

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join AMVA

Fork-Join Approximate Mean Value Analysis

Approximation method for multiclass fork-join queueing
networks

Iteratively solve for the mean queue lengths and throughputs

Best approximation method we know of

Compare our results against this

Used in our method to initialize the queue lengths and
throughputs

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join AMVA

Fork-Join Approximate Mean Value Analysis

Approximation method for multiclass fork-join queueing
networks

Iteratively solve for the mean queue lengths and throughputs

Best approximation method we know of

Compare our results against this

Used in our method to initialize the queue lengths and
throughputs

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

FJ-AMVA Algorithm

In each iteration:

Compute residence time for all queues as
R ′
i (n) = si · (1 + n̄i (n − 1))

Re-number queues such that R ′
1(n) ≥ R ′

2(n) ≥ · · · ≥ R ′
K (n)

Compute residence time for FJ construct as
∑K

k=1
1
kR

′
k(n)

Compute throughput as X (n) = n/
∑K

k=1
1
kR

′
k(n)

Compute new mean queue lengths as n̄i (n) = X (n) · R ′
i (n)

Terminate loop when the difference in successive mean queue
lengths is less than some ε

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join DRA

Extends the DRA method to work for fork-join queueing
networks

Same high level idea as DRA, but we modify how some steps
are performed

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Fork-Join DRA

Extends the DRA method to work for fork-join queueing
networks

Same high level idea as DRA, but we modify how some steps
are performed

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Recap on DRA

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon) def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Recap on DRA

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon) def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization

Two possible methods of initializing the throughput:

AMVA-FCFS (same as DRA)

Fork-Join AMVA

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization

DRA uses a simple iterative solver, AMVA-FCFS

Requires the mean service demand, θir = vir · sir
sir : mean service time per visit

sir = 1
µir

vir : mean number of visits of class r jobs to queue i

vir =
∑M

j=1 Pji · vjr
Pij : routing probability from queue i to queue j

Visits to queue i is the sum of the visits to queues feeding
into queue i

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization

DRA uses a simple iterative solver, AMVA-FCFS

Requires the mean service demand, θir = vir · sir
sir : mean service time per visit

sir = 1
µir

vir : mean number of visits of class r jobs to queue i

vir =
∑M

j=1 Pji · vjr
Pij : routing probability from queue i to queue j

Visits to queue i is the sum of the visits to queues feeding
into queue i

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization

For FJ queueing networks, the sum of visits of feeding queues
will overcount for queues after the join point

To deal with that, we need to use the sum of visits of feeding
queues into the fork point instead

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization - Comparison

We compared the accuracy of the approximations obtained
when initializing with both methods

We refer to the mean queue length error across all queues and
classes

error = 1
2K

∑M
i=1

∑R
r=1 |Qi ,r − Q̂i ,r |

Tested on the queueing network below

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization - Comparison

λ1,1 λ1,2 λ2,1 λ2,2 λ3,1 λ3,2 K1 K2 Error (FCFS) Error (FJ)
2 4 2 4 2 4 1 1 0.1082 0.1082
2 4 2 4 2 4 2 2 0.1196 0.1196
2 4 2 4 2 4 3 3 0.1248 0.1247
2 4 2 4 2 4 4 4 0.1289 0.1289
2 4 2 2 4 8 2 3 0.0476 0.0476
2 4 2 4 3 6 2 3 0.0862 0.0862
2 4 2 4 4 8 2 3 0.0607 0.0607
2 4 2 4 6 12 2 3 0.0467 0.0467

Table: Error for Different Initialization Methods

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization - Comparison

Both methods are O(IMK) where I is the number of iterations

Runtime of both methods are orders of magnitude smaller
than the overall solver

FJ-AMVA produces initial estimations that are much closer to
the actual values

FJ-AMVA is easier to use, no extra work required to prepare
input

No discernible difference in accuracy or performance

We chose FJ-AMVA as the initialization method for ease of
use

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization - Comparison

Both methods are O(IMK) where I is the number of iterations

Runtime of both methods are orders of magnitude smaller
than the overall solver

FJ-AMVA produces initial estimations that are much closer to
the actual values

FJ-AMVA is easier to use, no extra work required to prepare
input

No discernible difference in accuracy or performance

We chose FJ-AMVA as the initialization method for ease of
use

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Initialization - Comparison

Both methods are O(IMK) where I is the number of iterations

Runtime of both methods are orders of magnitude smaller
than the overall solver

FJ-AMVA produces initial estimations that are much closer to
the actual values

FJ-AMVA is easier to use, no extra work required to prepare
input

No discernible difference in accuracy or performance

We chose FJ-AMVA as the initialization method for ease of
use

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Computing Arrival Processes - Recap

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Computing Arrival Processes - Recap

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Computing Arrival Processes

For queues after the join point, we need a new way to
compute the arrival process

For all other queues, arrival process is unaffected and nothing
new is required

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Synchronizing Fork-Join Queues

Existing method to approximate the departure process from join
point by assuming finite length synchronization queues

Figure: MAP representing departure process with sync queue length = 2

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Synchronizing Fork-Join Queues

Consider the service process for class r at queue i

We approximate the departure process as the service process
multiplied by ρi ,r

Use the method to generate a new D0 matrix in exactly the
same way as before

Consider each class one at a time and generate new D1,i

matrices

Set D1 =
∑M

i=1 D1,i

Normalize the MMAP, ensuring D0 + D1 is a valid transition
rate matrix

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Using Product Form Solver

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Using Product Form Solver

Recall the DRA method:

Obtain initial estimate of throughput, Xi

Optimize for min f (X) locally around Xi (using fmincon)
def f (X):

Compute utilization, ~ρ, for each queue ρq,c = Xc · θq,c
Compute arrival MMAP[k] into each queue as superposition
of departure processes of feeding queues scaled by ~ρ

Compute decay rate of each queue when treated as a single
MMAP[k]/PH[k]/1 queue

Use decay rates with product form solver to obtain new
estimates for utilization ~ρ′ and queue lengths

Return |~ρ− ~ρ′|

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Using Product Form Solver

Part of the input to the product form (PF) solver is the job
population for each class

Mean queue lengths from PF solver will be based on those
populations

ci =
∑M

q=1 Q
(PF)
q,i

where ci is the population of class i

Q
(PF)
q,i is the mean queue lengths for class i at queue q

obtained from the PF solver

However, when we have fork-join queues we have:

ci <
∑M

q=1 Qq,i

because one job splits into multiple jobs at the fork point

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Using Product Form Solver

Part of the input to the product form (PF) solver is the job
population for each class

Mean queue lengths from PF solver will be based on those
populations

ci =
∑M

q=1 Q
(PF)
q,i

where ci is the population of class i

Q
(PF)
q,i is the mean queue lengths for class i at queue q

obtained from the PF solver

However, when we have fork-join queues we have:

ci <
∑M

q=1 Qq,i

because one job splits into multiple jobs at the fork point

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Using Product Form Solver

To deal with this, we provide the PF solver a modified set of
populations

c ′i =
∑M

q=1 Q
init
q,i

where Q init
q,i is the initial approximation of mean queue length

for queue q and class i

Doing this scales Q
(PF)
q,i to be a more accurate approximation

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency

Profiled code using MATLAB’s built in profiler

Investigate how runtime scales as we increase:

Number of fork-join queues
Length of synchronization queue

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Profiling

Fork-Join Queues Total Time (s)

2 2.412

3 5.536

4 35.643

5 814.599

Table: Increasing Number of Fork-Join Queues and Runtime

Sync Queue Length Total Time (s)

1 4.501

2 8.092

3 14.925

4 33.174

5 88.88

Table: Increasing Synchronization Queue Length and Runtime

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Resizing MMAP

Generated MMAPs become extremely large as we increase the
two factors

Resize the MMAP once it becomes larger than a certain size

We investigated resizing to MMAP with one state

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Resizing MMAP

Generated MMAPs become extremely large as we increase the
two factors

Resize the MMAP once it becomes larger than a certain size

We investigated resizing to MMAP with one state

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Resizing MMAP

Generated MMAPs become extremely large as we increase the
two factors

Resize the MMAP once it becomes larger than a certain size

We investigated resizing to MMAP with one state

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Resizing to single state MMAP

We compute the rate for each class as λc = sum(π · D1,c)

where π is the equilibrium distribution of the MMAP

So the new matrices are D1,c = [λc] and D0 = −
∑K

c=1 D1,c

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Efficiency - Resizing to single state MMAP

Scales better - No discernible increase with synchronization
queue length and approximately linear increase with number
of FJ queues

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Overview

Compare our method against the FJ-AMVA method

Vary the following factors:

Number of FJ queues
Heterogeneity of FJ queues
Complexity of service distributions

Homogeneous FJ queues with exponential service distribution
(unless directly testing that factor)

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Number of FJ Queues

Our FJ-DRA method is more accurate than the FJ-AMVA
method for all our tests
Trend suggests that it will continue to be more accurate even
as we increase the number of FJ queues
Overall error increases as number of FJ queues increases

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Heterogeneity

We fixed the number of FJ queues at 4 and used the following
parameters:

Parameter Value

c1 2

c2 3

λ1,1 1

λ1,2 2

λk,1 (∀k 6= 1) 1+0.1(k-1)h

λk,2 (∀k 6= 1) 2+0.2(k-1)h

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Heterogeneity

The performance of both approximation methods is quite close

FJ-DRA is better at lower levels of heterogeneity

Overall, error is trending down

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Erlang-2 Service Distribution

Used Erlang-2 as service distribution for all queues

Used 2 FJ queues

Fix some parameters as in the table below:

Parameter Value

λ1,1 2

λ1,2 4

c1 1

c2 2

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Erlang-2 Service Distribution

Performance is quite close, FJ-DRA is slightly better in most
cases

Error is less than 5% for all tests

No clear trend as λ’s change

λk,1 λk,2 FJ-DRA % Error FJ-AMVA % Error

2 4 4 4

3 4 3.12 3.16

4 4 2.63 4.36

3 5 2.76 3

3 6 2.56 3.11

4 8 3.85 3.39

5 10 4.27 3.68

6 12 4.23 3.72

10 20 3.57 3.18

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Results - Summary

Tested three factors:

Number of FJ Queues
Heterogeneity of FJ Queues
Complexity of service distributions

In most of our tests, FJ-DRA is at least approximately as
accurate as the FJ-AMVA method and there are some cases
where FJ-DRA clearly outperforms FJ-AMVA

Only tests where FJ-AMVA performs better is where FJ
queues are very heterogeneous

Overall, FJ-DRA method had less than 10% error in all our
tests

Introduction DRA FJ-AMVA FJ-DRA Efficiency Results Conclusion

Conclusion

We presented the FJ-DRA method to approximate multiclass
FJ queues

We investigated how resizing the MMAP to a single state can
help improve the efficiency

We compared FJ-DRA against FJ-AMVA and found that it
performs better in most of our tests

Questions?

	Introduction
	Objective

	DRA
	Overview

	FJ-AMVA
	Overview

	FJ-DRA
	Overview
	Initialization
	Computing Arrival Processes
	Using Product Form Solver

	Efficiency
	Overview
	Profiling
	Resizing

	Results
	Overview
	Number of FJ Queues
	Heterogeneity
	Service Distributions
	Summary

	Conclusion
	Conclusion

